ELECTROLYTES. HARNESS OF WATER

Experiment 1.

Determination of pH using indicator papers

Laboratory equipment:

- test tubes in rack,

Chemicals:

- NaNO_{3},
- $\mathrm{NH}_{4} \mathrm{Cl}$,
- MgCl_{2},
- AlCl_{3},
- $\mathrm{Na}_{2} \mathrm{CO}_{3}$,
- $\quad \mathrm{Na}_{2} \mathrm{HPO}_{4}$.

Pour approximately $1 \mathrm{~cm}^{3}$ of each solution into a test-tubes. Then wet sequentialy indicator papers with salts and compare the color with universal indicator color scale assesing pH with accurancy 1.

Experiment 2.

Determination of dissociation degree and dissociation constant of aqueous $\mathrm{CH}_{3} \mathbf{C O O H}$

Laboratory equipment:

- test tubes in rack,
- pH-meter,
- universal electrode,
- indicator papers,
- beakers

Chemicals:

- $1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$
- $\quad 0,01 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$

Determine the pH of the 0.01 M and 1 M acetic acid solution with an indication papers. Measure the pH of the solutions using a pH meter. Calculate the hydrogen ion concentration corresponding to the values of the pH of both solutions.

Experiment 3.

Ionic Reactions preparation of sparingly soluble salts

Laboratory equipment:

- test tubes in rack,

Chemicals:

- 1 M BaCl 2
- $1 \mathrm{M} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$
- $1 \mathrm{M} \mathrm{Na} 2 \mathrm{SO}_{4}$
- $1 \mathrm{M} \mathrm{H} \mathrm{HO}_{4}$

Pour approximately $1 \mathrm{~cm}^{3}$ of BaCl_{2} into two tubes and $1 \mathrm{~cm}^{3} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ to the next two. Add dropwise $\mathrm{H}_{2} \mathrm{SO}_{4}$ to one tube with BaCl_{2} and one with $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$. Analogous deposit precipitates using $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Write reactions in ionic and molecular form in the appropriate table in a worksheet report.

Experiment 4
 Determination of temporary hardness of water

Determination of temporary hardness of water is based on the titration of the water sample with a solution of hydrochloric acid of a known concentration in the presence of the indicator. During titration calcium and magnesium bicarbonates react with hydrochloric acid according to the reactions:

$$
\begin{aligned}
& \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}+2 \mathrm{HCl}=\mathrm{CaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{CO}_{2} \\
& \mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}+2 \mathrm{HCl}=\mathrm{MgCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{CO}_{2}
\end{aligned}
$$

Change of the indicator's colour points to the end of the titration.

Laboratory equipment:	Chemicals:	
-	4 conical flasks,	-0.1 M HCl,
-	burette,	- indicator (methyl orange)
-	pipette	

Measure $50 \mathrm{~cm}^{3}$ of tap water using measuring cylinder. Pour it into a conical flask, add 2 drops of methyl orange. Fill the burette with 0.1 M HCl to the volume marked " 0 ", and titrate water dropwise from a burette until the solution of the colour change from yellow to pink. Read the burette volume of HCl used. Repeat titration. For the calculation take the average of the results.
Perform the same procedure for boiled, distilled and mineral water.

Experiment 5

Determination of total hardness of water with disodium edetate

Determination of total hardness is based on the titration of the water sample containing ammonium buffer ($\mathrm{pH} \sim 10$) solution of disodium EDTA to a known concentration as an indicator of Eriochrome black. In this environment, calcium and magnesium ions, which are responsible for water hardness, react with disodium edetate according to the reaction:


```
Laboratory equipment:
```

Chemicals:

- 0.02 M EDTA,
- indicator (Eriochrome black),
- ammonium buffer

In order to be sure observing the end of the titration, it is advisable to use comparative solution: the analyzed water containing the same amount of buffer and indicator. Measure $50 \mathrm{~cm}^{3}$ of tap water using measuring cylinder to 2 conical flasks, add $1 \mathrm{~cm}^{3}$ of the ammonium buffer with pipette and 5 drops of Eriochrome black indicator. Both flask set next to each other on a white sheet. The first solution is to be treated as a pattern of colour, while the second titrate with 0.02 M EDTA solution until the colour changes from red to blue. Read the burette volume of EDTA solution consumed. Repeated titration. For the calculation take the average of the results.
Perform the same procedure for boiled, distilled and mineral water.

20..........	Name, surname:	Assistant signature
WIMiR		
Gr.	Subject: ELECTROLYTES. HARDNESS OF WATER	

Experiment 1.
Determination of pH using indicator papers

Salt	pH	hydrolysis reaction	pH range after hydrolysis
NaNO_{3}			
$\mathrm{NH}_{4} \mathrm{Cl}$		$\mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O}=\mathrm{NH}_{4} \mathrm{OH}+\mathrm{H}^{+}+\mathrm{Cl}^{-}$	$\mathrm{pH}<7$ (acidic)
MgCl_{2}			
AlCl_{3}			
$\mathrm{Na}_{2} \mathrm{CO}_{3}$			
$\mathrm{Na}_{2} \mathrm{HPO}_{4}$			

Experiment 2.

Determination of dissociation degree and dissociation constant of aqueous $\mathrm{CH}_{3} \mathbf{C O O H}$

concentration of acetic acid	pH (indicator paper)	pH $(\mathrm{pH}-$ meter)	concentration of hydrogen ions $\left[\mathrm{H}^{+}\right]$	the degree of dissociation α	dissociation constant K
$\mathbf{1 M}$					
$\mathbf{0 , 0 1 \mathrm { M }}$					

Calculate α and K using following formulas:

$$
\begin{align*}
& \alpha=\frac{n_{d}}{n_{o}} \tag{1}\\
& K=\frac{\alpha}{1-} C_{m} \tag{2}
\end{align*}
$$

$\alpha-$ the degree of dissociation
$n_{d}-$ number of moles of dissociating molecules
$n_{o}-$ overall number of moles of molecules
$\alpha-$ the degree of dissociation
$K-$ dissociation constant
C_{m} - molar concentration of electrolyte

Assumig for weaks electrolytes $1-\alpha \approx 1$ formula (2) can be expressed as:

$$
\begin{equation*}
\mathbf{K}=\alpha^{2} \mathbf{C} \tag{3}
\end{equation*}
$$

Experiment 3.
Ionic Reactions preparation of sparingly soluble salts

Reagents	Reaction in molecular and ionic form
$\mathrm{BaCl}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4}$	$\mathrm{BaCl}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4}=\mathrm{BaSO}_{4} \downarrow+2 \mathrm{HCl}$ $\mathrm{Ba}^{2+}+2 \mathrm{Cl}^{-}+2 \mathrm{H}^{+}+\mathrm{SO}_{4}{ }^{2-}=\mathrm{BaSO}_{4} \downarrow+2 \mathrm{H}^{+} /+2 \mathrm{Cl}^{-}$
$\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{SO}_{4}$	
$\mathrm{BaCl}+\mathrm{Na}_{2} \mathrm{SO}_{4}$	
$\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{Na}_{2} \mathrm{SO}_{4}$	

Experiments 4, 5.

Determination of temporary and permanent hardness of water

type of water	$\mathbf{v}_{\mathrm{HCI}}$ $\left[\mathrm{cm}^{3}\right]$	temporary hardness $\left[{ }^{\circ} \mathrm{dH}\right]$	$\mathrm{v}_{\text {EDTA }}$ $\left[\mathrm{cm}^{3}\right]$	general hardness $[\mathrm{dGH}]$	class of water
tap water					
boiled water					
distilled water					
mineral water					

Basing on titration results calculate temporary hardness according to formula (4) and the overall hardness according to the formula (5). The results collectin the table on the report sheet. On the basis of the total hardness qualify tap water, ion-exchange column softened and softened by heat to a grade.

$$
\begin{array}{lll}
\mathbf{H}_{\text {temporary }}=\mathbf{v}_{\mathrm{HCI}} \cdot 2.8\left[{ }^{\circ} \mathrm{dH}\right] & \text { (4) } \begin{array}{l}
\mathrm{v}_{\mathrm{HCI}}-\text { the volume of acid consumed for titration of } \\
\text { the water sample [cm }
\end{array} \\
\mathbf{H}_{\text {permanent }}=\frac{\mathbf{v}_{\text {EDTA }} \cdot \mathbf{J . 2} \cdot \mathbf{1 0 0 0}}{\mathbf{v}_{\mathbf{w}}} \quad[\mathrm{dGH}] & \text { (5) } \begin{array}{l}
\mathrm{v}_{\mathrm{W}}-\text { the volume of water taken for the titration }\left[\mathrm{cm}^{3}\right] \\
\mathrm{v}_{\text {EDTA }}-\text { disodium edetate volume consumed for } \\
\text { water titration }\left[\mathrm{cm}^{3}\right] \\
0.2-\text { conversion factor }
\end{array}
\end{array}
$$

Classify the water due to its hardness according to Table below.

Classification	hardness in $\mathbf{d G H} / /^{\mathbf{d H}}$
Soft	$0-3.37$
Moderately hard	$3.38-6.74$
Hard	$6.75-10.11$
Very hard	≥ 10.12

